Pairwise constraint propagation via low-rank matrix recovery
نویسندگان
چکیده
منابع مشابه
Low-rank matrix recovery via rank one tight frame measurements
The task of reconstructing a low rank matrix from incomplete linear measurements arises in areas such as machine learning, quantum state tomography and in the phase retrieval problem. In this note, we study the particular setup that the measurements are taken with respect to rank one matrices constructed from the elements of a random tight frame. We consider a convex optimization approach and s...
متن کاملVisual Salience Learning via Low Rank Matrix Recovery
Detection of salient object regions is useful for many vision tasks. Recently, a variety of saliency detection models have been proposed. They often behave differently over an individual image, and these saliency detection results often complement each other. To make full use of the advantages of the existing saliency detection methods, in this paper, we propose a salience learning model which ...
متن کاملStable low-rank matrix recovery via null space properties
The problem of recovering a matrix of low rank from an incomplete and possibly noisy set of linear measurements arises in a number of areas such as quantum state tomography, machine learning and the PhaseLift approach to phaseless reconstruction problems. In order to derive rigorous recovery results, the measurement map is usually modeled probabilistically and convex optimization approaches inc...
متن کاملLow-Rank Matrix Recovery via Efficient Schatten p-Norm Minimization
As an emerging machine learning and information retrieval technique, the matrix completion has been successfully applied to solve many scientific applications, such as collaborative prediction in information retrieval, video completion in computer vision, etc. The matrix completion is to recover a low-rank matrix with a fraction of its entries arbitrarily corrupted. Instead of solving the popul...
متن کاملExact Low-rank Matrix Recovery via Nonconvex Mp-Minimization
The low-rank matrix recovery (LMR) arises in many fields such as signal and image processing, statistics, computer vision, system identification and control, and it is NP-hard. It is known that under some restricted isometry property (RIP) conditions we can obtain the exact low-rank matrix solution by solving its convex relaxation, the nuclear norm minimization. In this paper, we consider the n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Visual Media
سال: 2015
ISSN: 2096-0433,2096-0662
DOI: 10.1007/s41095-015-0011-7